Mixtures

(Solutions)

Mixtures

- a combination of two or more substances that do not combine chemically, but remain the same individual substances; can be separated by physical means
- Two types:
- Heterogeneous
- Homogeneous

Based on the prefixes "hetero" and "homo," what do you think are characteristics of these two types of mixtures?

Creating Mixtures - Part 1

Procedures/Questions

1. Describe and draw what you see in the cups.
2. Pour the contents of cups A and cup B into a beaker and mix with a glass stirring rod.
3. Describe and draw what you see in the beaker after cups A and B are combined.
4. Using any means necessary, try to separate the mixture back into its original parts. Was it possible to separate the mixture? Why or why not?

Heterogeneous Mixture

"Hetero" means different
consists of visibly different substances or phases (solid, liquid, gas)

- a suspension is a special type of heterogeneous mixture of larger particles that eventually settle
- Example:

Trail Mix

Notice the visibly
different
substances

Creating Mixtures - Part 2

Procedures/Questions

1. Describe and draw what you see in the cups.
2. Pour the contents of cups C and cup D into a beaker and mix with a glass stirring rod.
3. Describe and draw what you see in the beaker after cups C and D are combined.
4. Using any means necessary, try to separate the mixture back into its original parts. Was it possible to separate the mixture? Why or why not?

Homogeneous Mixture

"Homo" means the same

- has the same uniform appearance and composition throughout; maintain one phase (solid, liquid, gas)
- Commonly referred to as solutions

Example:
Salt Water

Notice the
uniform appearance

Solution

- a mixture of two or more substances that is identical throughout
can be physically separated
- composed of solutes and solvents

Salt water is considered a solution. How can it be physically separated?

Colloids (milk, fog, jello) are considered solutions

Solutes Change Solvents

- The amount of solute in a solution determines how much the physical properties of the solvent are changed
- Examples:

Lowering the Freezing Point

The freezing point of a liquid solvent decreases when a solute is dissolved in it.

Ex. Pure water freezes at $32^{\circ} \mathrm{F}\left(0^{\circ} \mathrm{C}\right)$, but when salt is dissolved in it, the freezing point is lowered. This is why people use salt to melt ice.

Raising the Boiling Point

-The boiling point of a solution is higher. than the boiling point of the solvent.
Therefore, a solution can remain a liquid at a higher temperature than its pure solvent.

Ex. The boiling point of pure water is $212^{\circ} \mathrm{F}\left(100^{\circ} \mathrm{C}\right)$,
but when salt is dissolved in it, the boiling
point is higher. This is why it takes salt water
longer to boil than fresh water.

Concentration

- the amount of solute dissolved in a solvent at a given temperature - described as dilute if it has a low concentration of solute -described as saturated if it has a high concentration of
 solute
- described as supersaturated if contains more dissolved solute
 than normally possible

Solubility

- the amount of solute that dissolves in a certain amount of a solvent at a given temperature and pressure to produce a saturated solution
- influenced by:

What do we call things that are not soluble?

Solids \rightarrow increased pressure has no effect on solubility

Gases \rightarrow increased pressure causes them to be more soluble and vice versa

Acids

- from the Latin word acere \rightarrow "sharp" or "sour"
- taste sour (but you wouldn't taste an acid to see)
- change litmus paper red
- corrosive to some metals (reacts to create hydrogen gas $-\mathrm{H}_{2}$)
- a substance that can donate a hydrogen ion $\left(\mathrm{H}^{+}\right)$to another substance - create a hydrogen ion $\left(\mathrm{H}^{+}\right)$or hydronium ion $\left(\mathrm{H}_{3} \mathrm{O}^{+}\right)$when dissolved in water

> Notice how the hydrogen ion is released when the acid is in water

Examples: hydrochloric acid, vinegar, lemon juice, rainwater

Bases (Alkalis)

- taste bitter (but you wouldn't taste a base to see)
- feel slippery or soapy
- change litmus paper blue
- react with oils and grease
- a substance that can accept a hydrogen ion $\left(\mathrm{H}^{+}\right)$from another substance
- create a hydroxide ion $\left(\mathrm{OH}^{-}\right)$when dissolved in water

Examples: sodium hydroxide, Drano, Tums, baking soda

Neutralization Reaction

- occurs when acids and bases react with each other to produce water and salt
- acids release a hydrogen ion $\left(\mathrm{H}^{+}\right)$and bases release a hydroxide ion $\left(\mathrm{OH}^{-}\right) \rightarrow$ water $\left(\mathrm{H}_{2} \mathrm{O}\right)$
- the negative ion from the acid joins with the positive ion of a base \rightarrow salt

$\mathrm{HCl}+\mathrm{NaOH}$
 $\rightarrow \mathrm{H}_{2} \mathrm{O}$
 NaCl

Water

Sodium Chloride (salt)

Both the salt and water are neutral substances; therefore, that is why this is referred to as a neutralization reaction.

Acid, Base, or Neutralization?

$$
\mathrm{Zn}+2 \mathrm{H}^{+} \rightarrow \mathrm{Zn}^{2+}+\mathrm{H}_{2}
$$

Acid - because H_{2} gas was given off

$$
\mathrm{NH}_{3}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{NH}_{4}^{+}+\mathrm{OH}
$$

Base - because OH^{-}is present in the products

$$
\mathrm{HClO}+\mathrm{LiOH} \rightarrow \mathrm{ZClO}+\mathrm{H}_{2} \mathrm{O}
$$

Neutralization - because of the salt and water in the products $\mathrm{HCl}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{3}^{+}+\mathrm{Cl}^{-}$

Acid - because $\mathrm{H}_{3} \mathrm{O}^{+}$is present in the products

pH Scale

- ranges from 0-14
- Acids \rightarrow found between a number close to 0 \& 7
- Bases \rightarrow found between 7 \& 14
- Neutral $\rightarrow 7$
- measures the acidity or basicity of a solution by focusing on the concentration of hydrogen ions $\left(\mathrm{H}^{+}\right)$in a solution
- equals the negative log of the concentration of H^{+}

